Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 477712
Title Cell cycle and apoptosis in PER.C6® cultures
Author(s) Mercier, S.M.; Diepenbroek, B.; Martens, D.E.; Wijffels, R.H.; Streefland, M.
Source In: 23rd European Society for Animal Cell Technology (ESACT) Meeting: Better Cells for Better Health, Lille, France. - - p. P48 - P48.
Event 23rd European Society for Animal Cell Technology (ESACT) Meeting: Better Cells for Better Health, 2013-06-23/2013-06-26
DOI https://doi.org/10.1186/1753-6561-7-S6-P48
Department(s) Bioprocess Engineering
VLAG
Publication type Abstract in scientific journal or proceedings
Publication year 2013
Abstract PER.C6® is a human cell line designed for virus production, which was immortalized by transformation with adenoviral E1A and E1B genes. Expression of E1A is known to inhibit negative regulators of cell cycle and E1B protein function analogously to an apoptosis inhibitor. As changes in cell cycle and apoptosis are likely to affect cell's ability for viral infection and propagation, the study of these parameters in PER.C6® cultures is essential to develop optimum virus production processes. Materials and methods Cell cycle distribution and apoptosis were measured in batch and perfusion PER.C6® cultures using flow cytometry. Propidium iodide was used to measure cell cycle distribution. Three methods were used to measure apoptosis: staining of externalized phosphatidylserine (PS) using annexinV, staining of activated caspases using a fluorochrome-conjugated inhibitor of caspases, and staining of fragmented DNA using BrdU incorporation and specific fluorescent labeling. 7-ADD was used to stain dead cells with a permeable membrane. Results Significant cell death occurred in 14-days batches, when the main carbon sources were depleted. Apoptosis was initially not detected by the annexinV staining. However, activated caspases were detected after 6 days, suggesting that apoptosis occurred in batch. In perfusion, where the required nutrients were constantly supplied, no significant cell death or induction of apoptosis occurred, showing that the cultures were maintained in healthy conditions. At the end of batches, the portion of cells in S phase increased drastically and the one in G0/G1 decreased. In perfusion, cell cycle distribution was stable until 10 days, when a similar trend as the end of batch was observed. This is the first research describing apoptosis and cell cycle distribution in PER.C6® batch and perfusion cultures. Our data are in accordance with the theoretical effect of immortalization by the E1A/B system, which inhibits apoptosis when nutrients are in excess and promotes the entry into the cell division cycle.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.