Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 477819
Title Functional analysis of the conserved transcriptional regulator CfWor1 in Cladosporium fulvum reveals diverse roles in the virulence of plant pathogenic fungi
Author(s) Ökmen, B.; Collemare, J.; Griffiths, S.A.; Burgt, A. van der; Cox, R.; Wit, P.J.G.M. de
Source Molecular Microbiology 92 (2014)1. - ISSN 0950-382X - p. 10 - 27.
DOI https://doi.org/10.1111/mmi.12535
Department(s) Laboratory of Phytopathology
EPS-2
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) avirulence gene avr9 - dna-binding domains - candida-albicans - alternaria-brassicicola - magnaporthe-grisea - master regulator - expression - tomato - family - penetration
Abstract Fungal Wor1-like proteins are conserved transcriptional regulators that are reported to regulate the virulence of several plant pathogenic fungi by affecting the expression of virulence genes. Here, we report the functional analysis of CfWor1, the homologue of Wor1 in Cladosporium fulvum. ¿cfwor1 mutants produce sclerotium-like structures and rough hyphae, which are covered with a black extracellular matrix. These mutants do not sporulate and are no longer virulent on tomato. A CE.CfWor1 transformant that constitutively expresses CfWor1 produces fewer spores with altered morphology and is also reduced in virulence. RNA-seq and RT-qrtPCR analyses suggest that reduced virulence of ¿cfwor1 mutants is due to global downregulation of transcription, translation and mitochondrial respiratory chain. The reduced virulence of the CE.CfWor1 transformant is likely due to downregulation of effector genes. Complementation of a non-virulent ¿fosge1 (Wor1-homologue) mutant of Fusarium oxysporum f. sp. lycopersici with CfWor1 restored expression of the SIX effector genes in this fungus, but not its virulence. Chimeric proteins of CfWor1/FoSge1 also only partially restored defects of the ¿fosge1 mutant, suggesting that these transcriptional regulators have functionally diverged. Altogether, our results suggest that CfWor1 primarily regulates development of C.¿fulvum, which indirectly affects the expression of a subset of virulence genes.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.