Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 479171
Title Multi-model radiometric slope correction of SAR images of complex terrain using a two-stage semi-empirical approach
Author(s) Hoekman, D.H.; Reiche, J.
Source Remote Sensing of Environment 156 (2015). - ISSN 0034-4257 - p. 1 - 10.
DOI https://doi.org/10.1016/j.rse.2014.08.037
Department(s) Earth System Science
Laboratory of Geo-information Science and Remote Sensing
PE&RC
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) radar imagery - topography - forest - classification - backscatter - validation
Abstract Practical approaches for the implementation of terrain type dependent radiometric slope correction for SAR data are introduced. Radiometric slope effects are modelled as the products of two models. The first is a simple physical model based on the assumption of a uniform opaque layer of isotropic scatterers, which is independent of terrain type, frequency and polarization. It accounts for the slope-induced variation in the number of scatterers per resolution cell. The second is a semi-empirical model, which accounts for the variation in scattering mechanisms, dependent on terrain type, frequency and polarization. PALSAR FBD (L-band, HH- and HV-polarization) data are used at two test sites in Brazil and Fiji. Results for the Brazilian area, which has slopes up to 25°, show that remaining slope effects for the multi-model case are much smaller than 0.1 dB, for all land cover types. This is much better than the best single-model approach where remaining slope effects can be very small for forests but be as large as 1.77 dB for woodland in HH-polarization. Results for the Fiji area, which has different vegetation types, are very similar. The potential large improvement, using this multi-model approach, in the accuracy of biomass estimation for transparent or open canopies is discussed. It is also shown that biomass change on slopes can be systematically under- or overestimated because of associated change in scattering mechanism.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.