Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 481307
Title Clear-sky stable boundary layers with low winds over snow-covered surfaces Part I: A WRF model evaluation
Author(s) Sterk, H.A.M.; Steeneveld, G.J.; Vihma, T.; Anderson, P.S.; Bosveld, F.C.; Holtslag, A.A.M.
Source Quarterly Journal of the Royal Meteorological Society 141 (2015)691. - ISSN 0035-9009 - p. 2165 - 2184.
DOI https://doi.org/10.1002/qj.2513
Department(s) Meteorology and Air Quality
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2015
Abstract In this paper we evaluated the Weather Research and Forecasting (WRF) mesoscale meteorological model for stable conditions at clear skies with low wind speeds. Three contrasting terrains with snow covered surfaces are considered, namely Cabauw (Netherlands, snow over grass), Sodankylä (Finland, snow over a needle-leaf forest) and Halley (Antarctica, snow over an ice shelf). We used the full 3D model and the single-column versions of the WRF model. The SCM was driven by realistic forcings of the WRF-3D field. Several sets of SCM forcings were tested: A. no advection, B. varying geostrophic wind in time, C. momentum advection in addition to B, D. temperature and moisture advection in addition to C, and E. forcing the SCM field to the 3D field above a threshold height. The WRF-3D model produced overall good results for wind speed, but the near-surface temperatures and specific humidity were overestimated for Cabauw and Sodankylä, and underestimated for Halley. Prescribing advection for momentum, temperature and moisture gave the best results for the WRF-SCM, and simulations deviated strongly from reality without advection. Nudging the SCM field to the 3D field above a threshold height lead to an unrealistic behaviour of the variables below this height and is not recommended. Detailed prescription of the surface characteristics, e.g. adjusting the snow cover and vegetation fraction, improved the 2¿m temperature simulation. For all three sites, the simulated temperature and moisture inversion was underestimated, though this improved when prescribing advection. Overall, in clear-sky conditions, the stable boundary layer over snow and ice can be modelled to a good approximation if all processes are taken into account at high resolution, and if land surface properties are carefully prescribed.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.