Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 481316
Title Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding
Author(s) Lindhoud, S.; Westphal, A.H.; Mierlo, C.P.M. van; Visser, A.J.W.G.; Borst, J.W.
Source International Journal of Molecular Sciences 15 (2014)12. - ISSN 1661-6596 - p. 23836 - 23850.
DOI https://doi.org/10.3390/ijms151223836
Department(s) Biochemistry
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) resonance energy-transfer - beta parallel protein - single-molecule fluorescence - azotobacter-vinelandii - spectroscopic ruler - refractive-index - tryptophan residue - molten globule - wild-type - pathway
Abstract Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxin's complex folding pathway.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.