Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 481450
Title Improving obstacle awareness for robotic harvesting of sweet-pepper
Author(s) Bac, C.W.
Source Wageningen University. Promotor(en): Eldert van Henten, co-promotor(en): Jochen Hemming. - Wageningen : Wageningen University - ISBN 9789462571808 - 186
Department(s) GTB Tuinbouw Technologie
Farm Technology
WUR GTB Teelt & Bedrijfssystemen
PE&RC
Publication type Dissertation, internally prepared
Publication year 2015
Keyword(s) robots - oogsten - paprika's - obstructie - detectie - spectraalanalyse - beeldverwerking - simulatie - kassen - robots - harvesting - sweet peppers - obstruction - detection - spectral analysis - image processing - simulation - greenhouses
Categories Greenhouse Technology / Mechanization
Abstract

Abstract

Obstacles are densely spaced in a sweet-pepper crop and they limit the free workspace for a robot that can detach the fruit from the plant. Previous harvesting robots mostly attempted to detach a fruit without using any information of obstacles, thereby reducing the harvest success and damaging the fruit and plant. The hypothesis evaluated in this research is that a robot capable of distinguishing between hard and soft obstacles, and capable of employing this knowledge, improves harvest success and decreases plant damages during harvesting. In line with this hypothesis, the main objective was to develop a sweet-pepper harvesting robot capable of distinguishing between hard and soft obstacles, and of employing this knowledge.

As a start, the thesis describes the crop environment of a harvesting robot, reviews all harvesting robots developed for high-value crops, and defines challenges for future development. Based on insights from this review, we explored the ability to distinguish five plant parts. A multi-spectral imaging set-up and artificial lighting were developed and pixels were classified using a decision tree classifier and a feature selection algorithm. Classification performance was found insufficient and therefore post-processing methods were employed to enhance performance and detect plant parts on a blob basis. Still, performance was found insufficient and a focussed study was conducted on stem localization. The imaging set-up and algorithm developed for stem localization were used to provide real stem locations for motion planning simulations. To address the motion planning problem, we developed a new method of selecting the grasp pose of the end-effector. The new method and the stem localization algorithm were both integrated in the harvesting robot, and we tested their contribution to performance. This research is the first to report a performance evaluation of a sweet-pepper harvesting robot tested under greenhouse conditions. The robot was able to harvest sweet-peppers in a commercial greenhouse, but at limited success rates: harvest success was 6% when the Fin Ray end-effector was mounted, and 2% when the Lip-type end-effector was mounted. After simplifying the crop, by removal of fruit clusters and occluding leaves, harvest success was 26% (Fin Ray) and 33% (Lip-Type). Hence, these properties of the crop partly caused the low performance. The cycle time per fruit was commonly 94 s, i.e. a factor of 16 too long compared with an economically feasible time of 6 s. Several recommendations were made to bridge the gap in performance. Additionally, the robot’s novel functionality of stem-dependant determination of the grasp pose was evaluated to respond to the hypothesis.

Testing the effect of enabling stem-dependent determination of the grasp pose revealed that, in a simplified crop, grasp success increased from 41% to 61% for the Lip-type end-effector, and stem damage decreased from 19% to 13% for the Fin Ray end-effector. Although these effects seem large, they were not statistically significant and therefore resulted in rejection of the hypothesis. To re-evaluate significance of the effects, more samples should be tested in future work.

In conclusion, this PhD research improves the obstacle awareness for robotic harvesting of sweet-pepper by the robot’s capability of perceiving and employing hard obstacles (plant stems), whereas previous harvesting robots either lumped all obstacles in one obstacle class, or did not perceive obstacles. This capability may serve as useful generic functionality for future robots.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.