Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 483204
Title Identifying the core microbial community in the gut of fungus-growing termites
Author(s) Otani, S.; Mikaelyan, A.; Nobre, T.; Hansen, L.H.; Kone, N.A.; Sorensen, S.J.; Aanen, D.K.; Boomsma, J.J.; Brune, A.; Poulsen, M.
Source Molecular Ecology 23 (2014)18. - ISSN 0962-1083 - p. 4631 - 4644.
DOI https://doi.org/10.1111/mec.12874
Department(s) Laboratory of Genetics
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) feeding higher termite - bacterial community - phylogenetic analysis - functional-analysis - macrotermes-gilvus - lignin degradation - nasutitermes spp. - sp-nov. - diversity - hindgut
Abstract Gut microbes play a crucial role in decomposing lignocellulose to fuel termite societies, with protists in the lower termites and prokaryotes in the higher termites providing these services. However, a single basal subfamily of the higher termites, the Macrotermitinae, also domesticated a plant biomass-degrading fungus (Termitomyces), and how this symbiont acquisition has affected the fungus-growing termite gut microbiota has remained unclear. The objective of our study was to compare the intestinal bacterial communities of five genera (nine species) of fungus-growing termites to establish whether or not an ancestral core microbiota has been maintained and characterizes extant lineages. Using 454-pyrosequencing of the 16S rRNA gene, we show that gut communities have representatives of 26 bacterial phyla and are dominated by Firmicutes, Bacteroidetes, Spirochaetes, Proteobacteria and Synergistetes. A set of 42 genus-level taxa was present in all termite species and accounted for 56–68% of the species-specific reads. Gut communities of termites from the same genus were more similar than distantly related species, suggesting that phylogenetic ancestry matters, possibly in connection with specific termite genus-level ecological niches. Finally, we show that gut communities of fungus-growing termites are similar to cockroaches, both at the bacterial phylum level and in a comparison of the core Macrotermitinae taxa abundances with representative cockroach, lower termite and higher nonfungus-growing termites. These results suggest that the obligate association with Termitomyces has forced the bacterial gut communities of the fungus-growing termites towards a relatively uniform composition with higher similarity to their omnivorous relatives than to more closely related termites
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.