Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 483276
Title On noice in data assimilation schemes for improved flood forecasting using distributed hydrological models
Author(s) Noh, S.J.; Rakovec, O.; Weerts, A.H.; Tachikawa, Y.
Source Journal of Hydrology 519 (2014)part D. - ISSN 0022-1694 - p. 2707 - 2721.
DOI https://doi.org/10.1016/j.jhydrol.2014.07.049
Department(s) Hydrology and Quantitative Water Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) sequential data assimilation - ensemble kalman filter - surface soil-moisture - probabilistic forecasts - river-basin - streamflow - water - uncertainty - states - implementation
Abstract We investigate the effects of noise specification on the quality of hydrological forecasts via an advanced data assimilation (DA) procedure using a distributed hydrological model driven by numerical weather predictions. The sequential DA procedure is based on (1) a multivariate rainfall ensemble generator, which provides spatial and temporal correlation error structures of input forcing, and (2) lagged particle filtering to update past and current state variables simultaneously in a lag-time window to consider the response times of internal hydrologic processes. The procedure is evaluated for streamflow forecasting of three flood events in two fast-responding catchments in Japan (Maruyama and Katsura). The rainfall ensembles are derived from ground-based rain gauge observations for the analysis step and numerical weather predictions for the forecast step. The ensemble simulation performs multi-site updating using information from the streamflow gauging network and considers the artificial effects of reservoir release. Sensitivity analysis is performed to assess the impacts of noise specification in DA, comparing a different setup of random state noise and input forcing with/without multivariate conditional simulation (MCS) of rainfall ensembles. The results show that lagged particle filtering (LPF) forced with MCS provides good performance with small and consistent random state noise, whereas LPF forced with Thiessen rainfall interpolation requires larger random state noise to yield performance comparable to that of LPF + MCS for short lead times.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.