Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 485202
Title Effects of commercially available ultrasound on the zooplankton grazer Daphnia and consequent water greening in laboratory experiments
Author(s) Lürling, M.F.L.L.W.; Tolman, Y.
Source Water 6 (2014)11. - ISSN 2073-4441 - p. 3247 - 3263.
DOI https://doi.org/10.3390/w6113247
Department(s) Aquatic Ecology and Water Quality Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) algal bloom control - microcystis-aeruginosa - cyanobacterial toxins - fresh-water - eutrophication - phytoplankton - frequencies - ecosystems - marine
Abstract We tested the hypothesis that ultrasound in controlling cyanobacteria and algal blooms is “environmental friendly” by exposing the non-target zooplankton grazer Daphnia magna to ultrasound produced by commercially available ultrasound transducers. In populations of 15 Daphnia (~2 mm body size) exposed in 800 mL of water to ultrasound supplied at 20 kHz, 28 kHz, 36 kHz or 44 kHz, all animals were killed between 10 min (44 kHz) and 135 min (20 kHz). Differently sized Daphnia (0.7–3.2 mm) were all killed between 4 and 30 min when exposed to 44 kHz. Increasing water volumes up to 3.2 L and thus lowering the ultrasound intensity did not markedly increase survival of Daphnia exposed to 44 kHz ultrasound. A tank experiment with six 85 L tanks containing a mixture of green algae, cyanobacteria and D. magna was performed to study the effect of ultrasound over a longer time period (25 d). In controls, when Daphnia flourished, algal biomass dropped and the water became clear. In contrast, in ultrasound treatments, Daphnia abundance was extremely low releasing phytoplankton from grazing control, which resulted in high phytoplankton biomass. Hence, we conclude that ultrasound from commercially available transducers sold to clear ponds, aquaria and small reservoirs, should not be considered environmentally friendly and cannot be viewed as efficient in controlling phytoplankton.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.