Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 485304
Title Cell disruption for microalgae biorefineries
Author(s) Günerken, E.; Hondt, E. d'; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H.
Source Biotechnology Advances 33 (2015)2. - ISSN 0734-9750 - p. 243 - 260.
DOI https://doi.org/10.1016/j.biotechadv.2015.01.008
Department(s) Bioprocess Engineering
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) microwave-assisted extraction - fluidized-bed adsorption - electric-field treatment - synechocystis pcc 6803 - life-cycle assessment - chlorella-vulgaris - lipid extraction - microbial-cells - saccharomyces-cerevisiae - biodiesel production
Abstract Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.