Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 485488
Title On the edge energy of lipid membranes and the thermodynamic stability of pores
Author(s) Pera, H.; Kleijn, J.M.; Leermakers, F.A.M.
Source Journal of Chemical Physics 142 (2015). - ISSN 0021-9606 - 14 p.
DOI https://doi.org/10.1063/1.4905260
Department(s) Physical Chemistry and Colloid Science
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) molecular-dynamics simulations - interacting chain molecules - statistical thermodynamics - bilayer-membranes - phase-transition - cell-membranes - adsorption - model - size - vesicles
Abstract To perform its barrier function, the lipid bilayer membrane requires a robust resistance against pore formation. Using a self-consistent field (SCF) theory and a molecularly detailed model for membranes composed of charged or zwitterionic lipids, it is possible to predict structural, mechanical, and thermodynamical parameters for relevant lipid bilayer membranes. We argue that the edge energy in membranes is a function of the spontaneous lipid monolayer curvature, the mean bending modulus, and the membrane thickness. An analytical Helfrich-like model suggests that most bilayers should have a positive edge energy. This means that there is a natural resistance against pore formation. Edge energies evaluated explicitly in a two-gradient SCF model are consistent with this. Remarkably, the edge energy can become negative for phosphatidylglycerol (e.g., dioleoylphosphoglycerol) bilayers at a sufficiently low ionic strength. Such bilayers become unstable against the formation of pores or the formation of lipid disks. In the weakly curved limit, we study the curvature dependence of the edge energy and evaluate the preferred edge curvature and the edge bending modulus. The latter is always positive, and the former increases with increasing ionic strength. These results point to a small window of ionic strengths for which stable pores can form as too low ionic strengths give rise to lipid disks. Higher order curvature terms are necessary to accurately predict relevant pore sizes in bilayers. The electric double layer overlap across a small pore widens the window of ionic strengths for which pores are stable.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.