Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 486816
Title Mobile dune fixation by a fast-growing clonal plant: a full life-cycle analysis
Author(s) Werger, M.J.A.; During, H.J.; Zuidema, P.A.
Source Scientific Reports 5 (2015). - ISSN 2045-2322 - 7 p.
Department(s) Forest Ecology and Forest Management
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) integral projection models - inner mongolian dune - comparative demography - population-dynamics - psammochloa-villosa - relative importance - hedysarum-laeve - desert cactus - china - growth
Abstract Desertification is a global environmental problem, and arid dunes with sparse vegetation are especially vulnerable to desertification. One way to combat desertification is to increase vegetation cover by planting plant species that can realize fast population expansion, even in harsh environments. To evaluate the success of planted species and provide guidance for selecting proper species to stabilize active dunes, demographic studies in natural habitats are essential. We studied the life history traits and population dynamics of a dominant clonal shrub Hedysarum laeve in Inner-Mongolia, northern China. Vital rates of 19057 ramets were recorded during three annual censuses (2007–2009) and used to parameterize Integral Projection Models to analyse population dynamics. The life history of H. laeve was characterized by high ramet turnover and population recruitment entirely depended on clonal propagation. Stochastic population growth rate was 1.32, suggesting that the populations were experiencing rapid expansion. Elasticity analysis revealed that clonal propagation was the key contributor to population growth. The capacity of high clonal propagation and rapid population expansion in mobile dunes makes H. laeve a suitable species to combat desertification. Species with similar life-history traits to H. laeve are likely to offer good opportunities for stabilizing active dunes in arid inland ecosystems.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.