Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 488318
Title Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation
Author(s) Sommer, W.T.
Source Wageningen University. Promotor(en): Huub Rijnaarts, co-promotor(en): Tim Grotenhuis; J. Valstar. - Wageningen : Wageningen University - ISBN 9789462572942 - 204
Department(s) Environmental Technology
WIMEK
Publication type Dissertation, internally prepared
Publication year 2015
Keyword(s) watervoerende lagen - thermische energie - opslag - energieterugwinning - economische impact - milieueffect - bodemsanering - grondwaterverontreiniging - aquifers - thermal energy - storage - energy recovery - economic impact - environmental impact - soil remediation - groundwater pollution
Categories Energy
Abstract

Modelling and monitoring of Aquifer Thermal Energy Storage

Impacts of heterogeneity, thermal interference and bioremediation

Wijbrand Sommer
PhD thesis, Wageningen University, Wageningen, NL (2015)
ISBN 978-94-6257-294-2

Abstract

Aquifer thermal energy storage (ATES) is applied world-wide to provide heating and cooling to buildings. Application of ATES, instead of traditional heating and cooling installations, reduces primary energy consumption and related CO2 emissions. Intensified use of the subsurface for thermal applications requires more accurate methods to measure and predict the development of thermal plumes in the subsurface related to thermal interference between systems and address issues concerning subsurface urban planning and wide spread presence of contaminants in urban groundwater systems.

In this thesis, subsurface heat transport in ATES and the associated influence on storage performance for thermal energy was assessed. Detailed monitoring of subsurface temperature development around the wells of an existing system was achieved by a unique application of Distributed Temperature Sensing (DTS) using glass fibre optical cables. The measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity. Heat transport modelling shows that heterogeneity causes preferential flow paths that can affect thermal interference between systems, mainly depending on well-to-well distance and hydrogeological conditions.

At present, design rules are applied in such way that all negative interference is avoided. However, this limits the number of ATES systems that can be realized in a specific area, especially as these systems generally use only 60% of their permitted capacity. To optimize the use of available aquifer volume, the amount of thermal interference that is acceptable from an economical and environmental perspective was studied for different zonation patterns and well-to-well distances. Selecting the hydrogeological conditions of Amsterdam, the Netherlands, as a case study, this method shows that it is cost-effective to allow a limited amount of thermal interference, such that 30–40% more energy can be provided than compared to the case in which all negative thermal interference is avoided.

Because many urbanized areas deal with contaminated soil and groundwater, ambitions to increase the number of ATES systems are confronted with the presence of groundwater contaminants. This is of concern, because groundwater movement induced by the ATES system can result in increased mobility and spreading of these contaminants. However, the combination between ATES and soil and groundwater remediation could be a promising integrated technique, both for improving groundwater quality and development of ATES. Opportunities to use ATES as a continuous biostimulation tool for enhanced reductive dechlorination (ERD) have been explored with a reactive transport model.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.