Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 488435
Title Activation and evasion of the type I Interferon response by infectious bronchitis virus : roles of the accessory proteins
Author(s) Kint, J.
Source Wageningen University. Promotor(en): Geert Wiegertjes; Huub Savelkoul, co-promotor(en): Maria Forlenza. - Wageningen : Wageningen University - ISBN 9789462573376 - 138
Department(s) Cell Biology and Immunology
WIAS
Publication type Dissertation, internally prepared
Publication year 2015
Keyword(s) interferon - coronavirus - infectieus bronchitisvirus - coronaviridae - immuniteitsreactie - kippen - kippenziekten - pluimveeziekten - vaccinontwikkeling - kwantitatieve methoden - eiwit - virale inmenging - interferon - coronavirus - infectious bronchitis virus - coronaviridae - immune response - fowls - fowl diseases - poultry diseases - vaccine development - quantitative methods - protein - viral interference
Categories Infectious Diseases
Abstract

SUMMARY

Viruses are intracellular parasites that exploit the machinery of the host cell to replicate. To defend themselves against invading viruses, animal cells have evolved an anti-viral mechanism, known as the type I interferon response. Through natural selection viruses have in turn evolved mechanisms to counteract or evade the type I IFN response. Coronaviruses are a large group of positive-stranded RNA viruses that cause a range of human and veterinary diseases. Infectious bronchitis virus (IBV) is a member of the genus Gammacoronavirus and it is the causative agent of a highly contagious respiratory disease of poultry. To date, only few studies have investigated the interaction between IBV and the type I IFN response.

In this thesis, we describe for the first time the activation of the type I interferon response (IFN response) by the Gammacoronavirus IBV, and the repressive role of accessory proteins therein. In Chapter 1 I provide a general introduction into coronaviruses in general and the Gammacoronavirus IBV in particular. I also introduce the IFN response, and highlight differences between the mammalian and chicken IFN response. Finally, I review current knowledge on the roles of coronavirus accessory proteins in counteraction of the IFN response. In Chapter 2 we describe our studies which demonstrated that activation of the IFN response by IBV is dependent on the intracellular double-stranded RNA sensor MDA5. We show that detection of IBV-infection by MDA5 is delayed with respect to the peak of viral replication, and demonstrate that this delay is not due to inhibition of dsRNA detection by IBV. Using mutant viruses that cannot express accessory proteins (null viruses), we found that accessory proteins 3a and 3b of IBV mediate transcription and translation of Ifnβ mRNA.

The observation that IBV delays the activation of the IFN response, prompted us to investigate the sensitivity of IBV to IFN treatment in Chapter 3. Here we show that IBV is relatively resistant to treatment with type I IFN, as relatively high doses of type I IFN are required to decrease propagation of the virus. Next, we studied which viral protein(s) contribute to resistance of IBV to type I IFN and found that absence of accessory proteins 3a and 3b increased sensitivity of IBV to type I IFN, via a presently unknown mechanism. In addition, we observed that independent of accessory proteins 3a and 3b, IBV blocks signaling of IFN by inhibiting phosphorylation and translocation of the transcription factor STAT1. To explain the delayed kinetics of IFN production observed in Chapter 2, we investigated whether delayed protein production was restricted to IFN, or whether IBV, like Alpha- and Betacoronaviruses, inhibits general translation of host proteins (i.e. induces host shutoff). In Chapter 4 we demonstrate that IBV-induced transcription of Ifnβ mRNA leads to the production of relatively little IFN protein. We discovered that limited production of IFN protein by IBV-infected cells is the result of general inhibition of host translation, confirming that IBV induces a shutoff of host-protein production. This finding indicates that evasion of the innate immune system by Gammacoronaviruses may be more similar to that of Alpha- and Betacoronaviruses than previously thought. Using accessory protein null viruses we discovered that accessory protein 5b of IBV is essential for the inhibition of host-protein synthesis by IBV. In Chapter 5 and Chapter 6 we describe the methods used in this thesis to quantify the number of infectious virus particles of IBV as well as methods used to quantify the activation of the type I IFN response in chicken cells. Although the studies described in this thesis have answered several questions about the interaction of IBV with the type I IFN response of its host, they have also raised new questions to be addressed in future research. In the final Chapter of this thesis (Chapter 7), I discuss a number of remaining questions and future perspectives regarding evasion of the IFN response by IBV. Finally, I explore the possible implications of our findings on the in vivo pathogenicity of IBV and on the rational design of attenuated IBV vaccines.

In conclusion, the work described in this thesis demonstrates for the first time how IBV evades, activates, and antagonises the IFN response. Also, this thesis comprises the first study that describes a function for the accessory proteins of IBV and shows that these poorly understood proteins play an important role in antagonism of the type I IFN response.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.