Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 488544
Title Aqueous fractionation yields chemically stable lupin protein isolates
Author(s) Berghout, J.A.M.; Marmolejo-Garcia, C.; Berton-Carabin, C.C.; Nikiforidis, C.V.; Boom, R.M.; Goot, A.J. van der
Source Food Research International 72 (2015). - ISSN 0963-9969 - p. 82 - 90.
DOI https://doi.org/10.1016/j.foodres.2015.03.039
Department(s) Food Process Engineering
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) in-water emulsions - seed oil bodies - oxidative stability - antioxidant properties - lipid oxidation - physicochemical properties - functional-properties - quality - acids - polysaccharides
Abstract The chemical stability of lupin protein isolates (LPIs) obtained through aqueous fractionation (AF, i.e. fractionation without the use of an organic solvent) at 4 °C or 20 °C was assessed. AF of lupin seeds results in LPIs containing 2 wt.% oil. This oil is composed of mono- and poly-unsaturated fatty acids and the isolate may thus be prone to lipid and protein oxidation. Lipid and protein oxidation marker values of LPIs obtained at 4 °C and at 20 °C were below the acceptability limit for edible vegetable oils and meat tissue protein; the level of lipid oxidation markers was lower at 20 °C than at 4 °C. The fibre-rich pellet and the protein-rich supernatant obtained after AF also had lower levels of oxidation markers at 20 °C than at 4 °C. This is probably the result of a higher solubility of oxygen in water at lower temperature, which could promote lipid oxidation. The differences between fractions can be explained by the differences in their composition; the fibre-rich pellet contains polysaccharides that potentially have an anti-oxidative effect, while the protein-rich supernatant is rich in sulphur-rich proteins that may scavenge metal ions and free radicals from the aqueous phase. Additionally, the differences in solubility of metal ions and metal-chelating properties of protein at pH 4.5 and pH 7.0 explain the higher level of oxidation in the LPI at pH 4.5 compared with the LPI at pH 7.0. The application of a heat treatment to reduce oxidation decreased the protein and oil recovery values, and increased oxidation values above the acceptability limit. Therefore, AF at 20 °C is the most suitable process to obtain chemically stable LPIs.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.