Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 489168
Title Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold
Author(s) Daskalov, A.; Habenstein, B.; Martinez, D.; Debets, A.J.M.; Sabate, R.; Loquet, A.; Saupe, S.J.
Source PloS Biology 13 (2015)2. - ISSN 1545-7885
DOI https://doi.org/10.1371/journal.pbio.1002059
Department(s) Laboratory of Genetics
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) het-s prion - state nmr-spectroscopy - non-self recognition - heterokaryon incompatibility gene - glycolipid transfer protein - podospora-anserina - vegetative incompatibility - cell-death - het-s(218-289) prion - diversity
Abstract In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s ß-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the ß-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the ß-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the ß-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the ß-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the ß-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the ß-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.