Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 489976
Title Automated biological sulphate reduction: a review on mathematical models, monitoring and bioprocess control
Author(s) Cassidy, J.; Lubberding, H.J.; Esposito, G.; Keesman, K.J.; Lens, P.N.L.
Source FEMS Microbiology Reviews 39 (2015)6. - ISSN 0168-6445 - p. 823 - 853.
DOI https://doi.org/10.1093/femsre/fuv033
Department(s) Biomass Refinery and Process Dynamics
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2015
Abstract In the sulphate-reducing process, bioprocess control can be used to regulate the competition between microbial groups, to optimize the input of the electron donor and/or to maximize or minimize the production of sulphide. As shown in this review, modelling and monitoring are important tools in the development and application of a bioprocess control strategy. Pre-eminent literature on modelling, monitoring and control of sulphate-reducing processes is reviewed. This paper firstly reviews existing mathematical models for sulphate reduction, focusing on models for biofilms, microbial competition, inhibition and bioreactor dynamics. Secondly, a summary of process monitoring strategies is presented. Special attention is given to in situ sensors for sulphate, sulphide and electron donor concentrations as well as for biomass activity and composition. Finally, the state of the art of the bioprocess control strategies in biological sulphate reduction processes is overviewed.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.