Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 490027
Title Effect of temperature on denitrifying methanotrophic activity of 'Candidatus Methylomirabilis oxyfera'
Author(s) Kampman, C.; Piai, L.; Hendrickx, T.L.G.; Temmink, B.G.; Zeeman, G.; Buisman, C.J.N.
Source Water Science and Technology 70 (2014)10. - ISSN 0273-1223 - p. 1683 - 1689.
DOI https://doi.org/10.2166/wst.2014.431
Department(s) Environmental Technology
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) waterzuivering - denitrificatie - biologische behandeling - water treatment - denitrification - biological treatment - anaerobic methane oxidation - municipal waste-water - nitrogen removal - membrane bioreactor - sewage-treatment - uasb-digester - degrees-c - bacteria - enrichment - nitrite
Categories Waste Water Treatment
Abstract The activity of denitrifying methanotrophic bacteria at 11-30 degrees C was assessed in short-term experiments. The aim was to determine the feasibility of applying denitrifying methanotrophic bacteria in low-temperature anaerobic wastewater treatment. This study showed that biomass enriched at 21 degrees C had an optimum temperature of 20-25 degrees C and that activity dropped as temperature was increased to 30 degrees C. Biomass enriched at 30 degrees C had an optimum temperature of 25-30 degrees C. These results indicated that biomass from low-temperature inocula adjusted to the enrichment temperature and that low-temperature enrichment is suitable for applications in low-temperature wastewater treatment. Biomass growth at
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.