Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 490179
Title Lumped surface and sub- surface runoff for erosion modeling within a small hilly watershed in northern Vietnam
Author(s) Bui, Y.T.; Orange, D.; Visser, S.M.; Hoanh, C.T.; Laissus, M.; Poortinga, A.; Tran, D.T.; Stroosnijder, L.
Source Hydrological Processes 28 (2014)6. - ISSN 0885-6087 - p. 2961 - 2974.
DOI https://doi.org/10.1002/hyp.9860
Department(s) Soil, Water and Land Use
Soil Physics and Land Management
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) land-use changes - soil-erosion - sediment transport - steep slopes - sensitivity-analysis - scale - infiltration - catchments - framework - thailand
Abstract Developing models to predict on-site soil erosion and off-site sediment transport at the agricultural watershed scale represent an on-going challenge in research today. This study attempts to simulate the daily discharge and sediment loss using a distributed model that combines surface and sub-surface runoffs in a small hilly watershed (<1km(2)). The semi-quantitative model, Predict and Localize Erosion and Runoff (PLER), integrates the Manning-Strickler equation to simulate runoff and the Griffith University Erosion System Template equation to simulate soil detachment, sediment storage and soil loss based on a map resolution of 30m x 30m and over a daily time interval. By using a basic input data set and only two calibration coefficients based, respectively, on water velocity and soil detachment, the PLER model is easily applicable to different agricultural scenarios. The results indicate appropriate model performance and a high correlation between measured and predicted data with both Nash-Sutcliffe efficiency (Ef) and correlation coefficient (r(2)) having values>0.9. With the simple input data needs, PLER model is a useful tool for daily runoff and soil erosion modeling in small hilly watersheds in humid tropical areas.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.