Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 491022
Title The effect of nearly closed RAS on the feed intake and growth of Nile tilapia (Oreochromis niloticus), African catfish (Clarias gariepinus) and European eel (Anguilla anguilla)
Author(s) Mota, V.C.; Limbu, P.; Martins, C.I.; Eding, E.H.; Verreth, J.A.J.
Source Aquacultural Engineering 68 (2015). - ISSN 0144-8609 - p. 1 - 5.
DOI https://doi.org/10.1016/j.aquaeng.2015.06.002
Department(s) Aquaculture and Fisheries
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2015
Abstract One of the challenges that Recirculating Aquaculture Systems (RAS) are still facing is the risk that in RAS fish grow less than in flow-through systems due to the accumulation of substances originating from feed, fish or bacteria associated with the water re-use. The present study investigated whether RAS with high and low accumulation levels of these substances affect feed intake and growth of Nile tilapia Oreochromis niloticus, African catfish Clarias gariepinus, and European eel Anguilla Anguilla. One-hundred and twenty individuals of each species were used (start body weights: Nile tilapia 264.8 ± 8.3 g; African catfish 253.2 ± 2.1 g and European eel 66.6 ± 1.3 g). For a period of 39 days, growth and feed intake were compared between high and low accumulation RAS. HIGH accumulation RAS was designed for maximal accumulation of substances in the water by operating the system at nearly-closed conditions (30 L/kg feed/d), using mature biofilters and high feed loads; and (2) LOW accumulation RAS was designed to be a proxy for flow-through systems by operating at high water exchange rates (1500 L/kg feed/d), new biofilters and low feed load. HIGH accumulation RAS induced a reduction in feed intake (42%) and growth (83%) of Nile tilapia, as compared to systems that are a proxy for flow-through conditions. This effect was not observed in European eel and African catfish. The cause of this reduced feed intake and growth rate of Nile tilapia is still unclear and should be addressed in further studies.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.