Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 493042
Title Influence of solar zenith angle on the enhanced vegetation index of a Guyanese rainforest
Author(s) Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Herold, M.
Source Remote Sensing Letters 6 (2015)12. - ISSN 2150-704X - p. 972 - 981.
Department(s) Laboratory of Geo-information Science and Remote Sensing
Publication type Refereed Article in a scientific journal
Publication year 2015
Abstract In this study, the effect of solar zenith angle () on enhanced vegetation index (EVI) of a Guyanese tropical rainforest was studied. For this sub-crown resolution, hyperspectral data have been collected with an unmanned aerial vehicle (UAV) at five different solar zenith angles in a 1-day period. The hyperspectral data were used to simulate Moderate Resolution Imaging Spectroradiometer (MODIS) spectral bands and generate EVI. The linear trend of EVI with solar zenith angle at nadir viewing conditions was found to be –0.00285 (). The direction of this trend was in agreement with earlier studies, but with a differing magnitude. Analysis of EVI images with sub-crown resolution pointed to strong influence of canopy shadows on EVI, which is supported by other studies. Additionally, the EVI–solar zenith angle trend was investigated in the semi-empirical RossThick-LiSparse-Reciprocal (RTLSR) model implemented in the MODIS MCD43 product suite. A database of model parameters has been created and the EVI–solar zenith angle trend was modelled with each set of parameters. The linear approximated trend was found to be –0.00219 on average, only slightly weaker compared to the trend derived from the UAV. Further analysis of the relationship between the single RTLSR model parameters and the EVI–solar zenith angle trend showed that the RTLSR produces the trend for the right reason, namely canopy shadowing expressed by the near-infrared geometric kernel. In total, this study delivers further evidence that EVI is dependent on solar zenith angle and this effect is mediated through EVI’s sensitivity to within-canopy shadows.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.