Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 503881
Title Leaf anatomy and photosynthesis : unravelling the CO2 diffusion pathway in C3 leaves
Author(s) Berghuijs, H.N.C.
Source Wageningen University; KU Leuven. Promotor(en): Paul Struik; Bart M. Nicolaï, co-promotor(en): Xinyou Yin. - Wageningen : Wageningen University - ISBN 9789462577947 - 286
Department(s) Applied Ecology
PE&RC
Publication type Dissertation, internally prepared
Publication year 2016
Keyword(s) leaves - plant anatomy - photosynthesis - mesophyll - photorespiration - carbon pathways - solanum lycopersicum - bladeren - plantenanatomie - fotosynthese - bladmoes - fotorespiratie - koolstofpathways - solanum lycopersicum
Categories Photosynthesis
Abstract

Keywords: CO2 diffusion, C3 photosynthesis, mesophyll conductance, mesophyll resistance, re-assimilation, photorespiration, respiration, tomato

Herman Nicolaas Cornelis Berghuijs (2016). Leaf anatomy and photosynthesis; unravelling the CO2 diffusion pathway in C3 leaves. PhD thesis. Wageningen University, Wageningen, The Netherlands, with summaries in English and Dutch. 286 pages

Optimizing photosynthesis can contribute to improving crop yield, which is necessary to meet the increasing global demand for food, fibre, and bioenergy. One way to optimize photosynthesis in C3 plants is to enhance the efficiency of CO2 transport from the intercellular air space to Rubisco. The drawdown of CO2 between these locations is commonly modelled by Fick's first law of diffusion. This law states that the flux from the air spaces to Rubisco is proportional to the difference in partial pressure between these locations. The proportionality constant is the mesophyll conductance. Its inverse is mesophyll resistance. Mesophyll resistance is a complex trait, which lumps various structural barriers for CO2 transport and processes that add or remove CO2 along the diffusion pathway. In order to better understand how and to what extent these factors affect photosynthesis, it is necessary to find a more mechanistic description of CO2 transport in the mesophyll. The aim of this dissertation is to investigate how leaf anatomical properties and CO2 sources and sinks along the CO2­ diffusion pathway in C3 leaves affect the photosynthetic capacity of these leaves. In this study, Solanum lycopersicum was used as a model organism. In a first approach, we developed a model in which we partitioned mesophyll resistance into two sub-resistances. The model assumed that CO2 produced by respiration and photorespiration was released between the two sub-resistance components. By quantifying these resistances using measured thicknesses, exposed mesophyll and chloroplast surfaces, and assumed diffusive properties, we were able to simulate the effect of various anatomical properties on photosynthesis. A disadvantage of this two-resistance approach is that it assumes either that (photo)respiratory CO2 release takes place in the outer cytosol or that there is no CO2 gradient in the cytosol. Therefore, in a second approach we modelled CO2 transport, production and consumption by use of a reaction-diffusion model. This model is more flexible in terms of determining the location of CO2 sources and sinks. We developed methods to estimate physiological parameters of this model using combined gas exchange and chlorophyll fluorescence measurements on leaves. The results suggest that the rate of respiration depends on the oxygen partial pressure, which is often not considered in previous photosynthesis models. We also presented a method to calculate the fraction of (photo)respiratory CO2 that is re-assimilated. We found that this fraction strongly depends on both environmental factors (CO2, irradiance), the location of mitochondria relative to the chloroplast, stomatal conductance and various physiological parameters. The reaction-diffusion model and associated methods presented in this study provide a more mechanistic framework to describe the CO2 diffusion pathway in C3 leaves. This model could, therefore, contribute to identifying targets to increase mesophyll conductance in future research.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.