Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 507679
Title Microbial electrosynthesis of biochemicals : innovations on biocatalysts, electrodes and ion-exchange for CO2 supply, chemicals production and separation
Author(s) Bajracharya, S.
Source Wageningen University. Promotor(en): Cees Buisman; David Strik; Deepak Pant. - Wageningen : Wageningen University - ISBN 9789462578531 - 181
Department(s) Environmental Technology
WIMEK
Publication type Dissertation, internally prepared
Publication year 2016
Keyword(s) carbon dioxide - biofuels - chemicals - biocatalysis - ion exchange - electrodes - kooldioxide - biobrandstoffen - chemicaliën - biokatalyse - ionenuitwisseling - elektrodes
Categories Engineering (General)
Abstract

Microbial electrosynthesis (MES) is an electricity-driven production of chemicals from low-value waste using microorganisms as biocatalysts. MES from CO2 comprises conversion of CO2 to multi-carbon compounds employing microbes at the cathode which use electricity as an energy source. This thesis presents innovations on MES from CO2 using anaerobic mixed-cultures, circumventing the methane generation. Acetate was the primary product but other products including ethanol, butyrate were also produced. Establishment of active biocathode at the graphite felt cathode was achieved under long-term operation which led to the acetate accumulation up to 7-10 g L-1 at -1 V/Ag/AgCl cathode potential. CO2 reduction in MES requires continuous availability of CO2 and low cathode potential to ensure the supply of reducing equivalents/hydrogen. Use of gas diffusion biocathode doubled the CO2 mass-transfer rate which enhanced the production rates, reaching. Furthermore, a sustainable technology for manufacturing biochemicals/biofuels was demonstrated in this thesis by integrating the product separation in MES. The electricity-driven production of chemicals/biofuels from CO2/waste products and subsequent product recovery studies prospect an integration of microbial electrosynthesis with biorefineries for the up-scaling of both technologies.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.