Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 508103
Title An expanded evaluation of protein function prediction methods shows an improvement in accuracy
Author(s) Jiang, Yuxiang; Oron, Tal Ronnen; Clark, Wyatt T.; Bankapur, Asma R.; Andrea, Daniel D'; Lepore, Rosalba; Funk, Christopher S.; Kahanda, Indika; Verspoor, Karin M.; Ben-Hur, Asa; Koo, Da Chen Emily; Penfold-Brown, Duncan; Shasha, Dennis; Youngs, Noah; Bonneau, Richard; Lin, Alexandra; Sahraeian, Sayed M.E.; Martelli, Pier Luigi; Profiti, Giuseppe; Casadio, Rita; Cao, Renzhi; Zhong, Zhaolong; Cheng, Jianlin; Altenhoff, Adrian; Skunca, Nives; Dessimoz, Christophe; Dogan, Tunca; Hakala, Kai; Kaewphan, Suwisa; Mehryary, Farrokh; Salakoski, Tapio; Ginter, Filip; Fang, Hai; Smithers, Ben; Oates, Matt; Gough, Julian; Törönen, Petri; Koskinen, Patrik; Holm, Liisa; Chen, Ching Tai; Hsu, Wen Lian; Bryson, Kevin; Cozzetto, Domenico; Minneci, Federico; Jones, David T.; Chapman, Samuel; BKC, Dukka; Khan, Ishita K.; Kihara, Daisuke; Ofer, Dan; Rappoport, Nadav; Stern, Amos; Cibrian-Uhalte, Elena; Denny, Paul; Foulger, Rebecca E.; Hieta, Reija; Legge, Duncan; Lovering, Ruth C.; Magrane, Michele; Melidoni, Anna N.; Mutowo-Meullenet, Prudence; Pichler, Klemens; Shypitsyna, Aleksandra; Li, Biao; Zakeri, Pooya; ElShal, Sarah; Tranchevent, Léon Charles; Das, Sayoni; Dawson, Natalie L.; Lee, David; Lees, Jonathan G.; Sillitoe, Ian; Bhat, Prajwal; Nepusz, Tamás; Romero, Alfonso E.; Sasidharan, Rajkumar; Yang, Haixuan; Paccanaro, Alberto; Gillis, Jesse; Sedeño-Cortés, Adriana E.; Pavlidis, Paul; Feng, Shou; Cejuela, Juan M.; Goldberg, Tatyana; Hamp, Tobias; Richter, Lothar; Salamov, Asaf; Gabaldon, Toni; Marcet-Houben, Marina; Supek, Fran; Gong, Qingtian; Ning, Wei; Zhou, Yuanpeng; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Toppo, Stefano; Ferrari, Carlo; Giollo, Manuel; Piovesan, Damiano; Tosatto, Silvio C.E.; Pozo, Angela del; Fernández, José M.; Maietta, Paolo; Valencia, Alfonso; Tress, Michael L.; Benso, Alfredo; Carlo, Stefano Di; Politano, Gianfranco; Savino, Alessandro; Rehman, Hafeez Ur; Re, Matteo; Mesiti, Marco; Valentini, Giorgio; Bargsten, Joachim W.; Dijk, Aalt-Jan van; Gemovic, Branislava; Glisic, Sanja; Perovic, Vladmir; Veljkovic, Veljko; Veljkovic, Nevena; Almeida-e-Silva, Danillo C.; Vencio, Ricardo Z.N.; Sharan, Malvika; Vogel, Jörg; Kansakar, Lakesh; Zhang, Shanshan; Vucetic, Slobodan; Wang, Zheng; Sternberg, Michael J.E.; Wass, Mark N.; Huntley, Rachael P.; Martin, Maria J.; O'Donovan, Claire; Robinson, Peter N.; Moreau, Yves; Tramontano, Anna; Babbitt, Patricia C.; Brenner, Steven E.; Linial, Michal; Orengo, Christine A.; Rost, Burkhard; Greene, Casey S.; Mooney, Sean D.; Friedberg, Iddo; Radivojac, Predrag
Source Genome Biology 17 (2016)1. - ISSN 1474-7596
Department(s) Plant Breeding
BIOS Applied Bioinformatics
Mathematical and Statistical Methods - Biometris
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Disease gene prioritization - Protein function prediction

Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.