Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 511515
Title Effects of N fertilization on trichome density, leaf size and artemisinin production in artemisia annua leaves
Author(s) Bilkova, I.; Kjaer, A.; Kooy, F. van der; Lommen, W.J.M.
Source Acta Horticulturae 1125 (2016). - ISSN 0567-7572 - p. 369 - 375.
Department(s) Crop Physiology
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Glandular trichomes - Leaf area - Malaria - Microscopy - Nitrogen - Trichomes

Artemisia annua is currently the only economically viable source of the antimalarial compound artemisinin. Synthesis of artemisinin takes place in glandular trichomes, primarily on the leaves from where artemisinin is extracted. It is not well understood why yields and concentrations of artemisinin vary across crops in relation to external conditions and agricultural practices. We therefore studied the diverse processes underlying artemisinin synthesis in A. annua crops, focussing on effects of |nitrogen fertilization on processes involved in formation of leaves and trichomes, and production of artemisinin in the individual leaves. In two field experiments, effects of nitrogen application levels (0, 75, 175, 400 kg N ha-1) on leaves from a selected position at the main stem and a primary branch were studied. Measurements during part of the life cycle of the leaves included: area and dry weight per leaf, trichome density on the abaxial (lower) leaf side, trichome size, and artemisinin concentration. Results showed that effects of N fertilization were generally small, but in line with the hypothesis that at low N levels individual leaves remain smaller but have higher trichome densities. These trends were especially clear in the branch leaves. The total |number of trichomes per leaf usually increased with increase in N application up to at least 175 kg N ha-1. Within a leaf position, effects of N application on artemisinin concentration in the leaf dry mass were similar to effects on percentage of leaf area covered by trichomes. The total quantity of artemisinin produced per (abaxial) trichome varied, but seemed to decrease linearly with increase in N level. There were no systematic linear or quadratic responses to N application in the total quantity of artemisinin per leaf. The reduction in artemisinin concentration in the leaf mass at higher N levels was therefore caused by increased dry weights per leaf.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.