Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 511710
Title Impacts on river systems under 2 °C warming : Bangladesh Case Study
Author(s) Zaman, A.M.; Molla, M.K.; Pervin, I.A.; Mahbubur Rahman, S.M.; Haider, A.S.; Ludwig, F.; Franssen, W.
Source Climate Services 7 (2017). - ISSN 2405-8807 - p. 96 - 114.
DOI https://doi.org/10.1016/j.cliser.2016.10.002
Department(s) Water Systems and Global Change
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2017
Keyword(s) Bangladesh - Basin model - Climate change - Hydrodynamic model - Regional Climatic Model (RCM) - Salinity intrusion - Sea level rise
Abstract

Bangladesh is particularly vulnerable due to the combined impacts of sea level rise, rainfall and runoff variability, and changes in cyclone patterns. This paper presents the application of an integrated modelling framework used to investigate climate change impacts when global averaged surface temperature increases by 2. C from pre-industrial level. The modelling framework consists of four model types: Regional climate model (RCM), Ganges-Brahmaputra-Meghna (GBM) Basin model, Southwest Region Hydrodynamic and Salinity models. Bias corrected climate results (temperature, precipitation and evapotranspiration) from SMHI-RCA and CNRM-ARPEGE RCMs for (Representative Concentration Pathway) RCP 8.5 scenario were used. The uniqueness of this research study was that the same GCM (General Circulation Model)/RCM results were used across the whole modelling chain. In Bagerhat District, it was found that river salinity can increase by about 0.5 to 2 PPT (parts per thousand). Also, the duration of river salinity above 1 PPT can double in some locations. In Kushtia District, in the months of November and December river flows may increase but not sufficiently in other months due to lack of connectivity to the Ganges River. In the flood-prone Shariatpur District, average wet season water level increases up to 0.2 to 0.5. m. Also, duration of flood levels above the established danger level can double in some locations. Finally, this study found that dredging of the mouth of the Gorai River (in Kushtia District) is an effective adaptation measure. The dredging ensures connectivity to the Ganges River, which allows freshwater to enter the Southwest region of Bangladesh, which not only alleviates drought conditions in Kushtia Distract but also helps push back saline intrusion.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.