Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 520487
Title Data acquisition considerations for Terrestrial Laser Scanning of forest plots
Author(s) Wilkes, Phil; Lau Sarmiento, Alvaro; Disney, Mathias; Calders, Kim; Burt, Andrew; Gonzalez De Tanago Meñaca, J.; Bartholomeus, Harm; Brede, Benjamin; Herold, Martin
Source Remote Sensing of Environment 196 (2017). - ISSN 0034-4257 - p. 140 - 153.
DOI https://doi.org/10.1016/j.rse.2017.04.030
Department(s) Laboratory of Geo-information Science and Remote Sensing
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2017
Abstract The poor constraint of forest Above Ground Biomass (AGB) is responsible, in part, for large uncertainties in modelling future climate scenarios. Terrestrial Laser Scanning (TLS) can be used to derive unbiased and non-destructive estimates of tree structure and volume and can, therefore, be used to address key uncertainties in forest AGB estimates. Here we review our experience of TLS sampling strategies from 27 campaigns conducted over the past 5 years, across tropical and temperate forest plots, where data was captured with a RIEGL VZ-400 laser scanner. The focus is on strategies to derive Geometrical Modelling metrics (e.g. tree volume) over forest plots (≥1 ha) which require the accurate co-registration of 10s to 100s of individual point clouds. We recommend a 10 m × 10 m sampling grid as an approach to produce a point cloud with a uniform point distribution, that can resolve higher order branches (down to a few cm in diameter) towards the top of 30+ m canopies and can be captured in a timely fashion i.e. ∼3–6 days per ha. A data acquisition protocol, such as presented here, would facilitate data interoperability and inter-comparison of metrics between instruments/groups, from plot to plot and over time.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.