Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 522326
Title Safeguarding water availability for food and ecosystems under global change : modelling and assessment of the role of environmental flows
Author(s) Pastor, Amandine V.
Source Wageningen University. Promotor(en): P. Kabat, co-promotor(en): F. Ludwig; H. Biemans. - Wageningen : Wageningen University - ISBN 9789463431767 - 177
Department(s) Water Systems and Global Change
WIMEK
Publication type Dissertation, internally prepared
Publication year 2017
Keyword(s) water availability - water management - flow - water deficit - food security - food production - global warming - aquatic ecosystems - waterbeschikbaarheid - waterbeheer - stroming - watertekort - voedselzekerheid - voedselproductie - opwarming van de aarde - aquatische ecosystemen
Categories Water Management (General)
Abstract

In a context of future population increase and intensification of water cycle by climate change, water demand for irrigation is projected to double. However, freshwater resources have been degraded the last decades especially in rivers via fragmentation, dam contraction and pollution. Flow alteration and degradation lead to 80% of freshwater ecosystem species loss. In this thesis, a robust and reliable Environmental Flow (EF) method was developed for global scale: the Variable Monthly Flow (VMF) method. This method allowed estimating EF deficit at global scale including its origin, timing, frequency and magnitude. By setting EFRs as priority user in a global vegetation and hydrological model (LPJmL), irrigation loss due to EFRs implementation were assessed at 30% leading to 5% global calorie loss. To maintain water allocation to humans and ecosystems under global change, food imports would require to increase by 15% especially from Latin America to South of Asia.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.