Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 526184
Title Acoustic dose-behavioral response relationship in sea bass (Dicentrarchus labrax) exposed to playbacks of pile driving sounds
Author(s) Kastelein, Ronald A.; Jennings, Nancy; Kommeren, Aimée; Helder-Hoek, Lean; Schop, Jessica
Source Marine Environmental Research 130 (2017). - ISSN 0141-1136 - p. 315 - 324.
DOI https://doi.org/10.1016/j.marenvres.2017.08.010
Department(s) Onderzoeksformatie
Publication type Refereed Article in a scientific journal
Publication year 2017
Keyword(s) Acoustics - Behavior - Marine fish - Offshore industry - Pile driving - Sea bass - Startle response - Wind park
Abstract

The foundations of offshore wind turbines are attached to the sea bed by percussion pile driving. Pile driving sounds may affect the behavior of fish. Acoustic dose-behavioral response relationships were determined for sea bass in a pool exposed for 20 min to pile driving sounds at seven mean received root-mean-square sound pressure levels [SPLrms; range: 130-166 dB re 1 μPa; single strike sound exposure level (SELss) range: 122-158; 6 dB steps]. Initial responses (sudden, short-lived changes in swimming speed and direction) and sustained responses (changes in school cohesion, swimming depth, and speed) were quantified. The 50% initial response threshold occurred at an SELss of 131 dB re 1 μPa2 s for 31 cm fish and 141 dB re 1 μPa2 s for 44 cm fish; the small fish thus reacted to lower SELss than the large fish. Analysis showed that there is no evidence, even at the highest sound level, for any consistent sustained response to sound exposure by the study animals. If wild sea bass are exposed to pile driving sounds at the levels used in the present study, there are unlikely to be any adverse effects on their ecology, because the initial responses after the onset of the piling sound observed in this study were short-lived.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.