Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 531451
Title Overexpression analysis of sigZ of B. cereus ATCC 14579.
Author(s) Voort, M. van der
Source Wageningen UR
Department(s) Food Microbiology
Publication type Dataset
Publication year 2008
Keyword(s) GSE9860 - Bacillus cereus - PRJNA103843 - GSE9860 - Bacillus cereus ATCC 14579 - PRJNA103843
Abstract The Bacillus cereus ATCC 14579 alternative σ factor σZ and its putative regulon have been characterized. σZ shows overall similarity with ECF σ factors and sigZ constitutes an operon together with asfZ encoding its putative anti-σ factor. Expression analysis revealed sigZ to be induced by an array of stresses, including exposure to ethanol, alkaline pH and heat shock, and a typical promoter binding site for the sigZ-operon was identified by 5’RACE. Phenotypic characterization of B. cereus ATCC 14579 and its sigZ-deletion strain revealed diminished growth performance and sporulation capacity. The σZ-regulon was successfully established by transcriptome analysis of a nisin inducible sigZ-overexpression strain. Overexpression of sigZ was shown to affect expression of 42 genes, including 33 genes encoding proteins located in the extracytoplasm. The identified σZ regulon contained genes encoding proteins situated in the extracytoplasm involved in cell surface modifications and transport. The regulation of genes encoding cell surface modification proteins implies σZ to be involved in the regulation of interaction of B. cereus ATCC 14579 with its environments, which includes human intestinal cells, possibly influencing its virulence status.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.