Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 538814
Title Rapid Quantitative Profiling of Lipid Oxidation Products in a Food Emulsion by 1H NMR
Author(s) Merkx, Donny W.H.; Hong, G.T.S.; Ermacora, Alessia; Duynhoven, John P.M. Van
Source Analytical Chemistry 90 (2018)7. - ISSN 0003-2700 - p. 4863 - 4870.
Department(s) Food Chemistry
Publication type Refereed Article in a scientific journal
Publication year 2018
Abstract Lipid oxidation is one of the most important reasons for the compromised shelf life of food emulsions. A major bottleneck in unravelling the underlying mechanisms is the lack of methods that provide a rapid, quantitative, and comprehensive molecular view on lipid oxidation in these heterogeneous systems. In this study, the unbiased and quantitative nature of 1H NMR was exploited to assess lipid oxidation products in mayonnaise, a particularly oxidation-prone food emulsion. An efficient and robust procedure was implemented to produce samples where the 1H NMR signals of oxidation products could be observed in a well resolved and reproducible manner. 1H NMR signals of hydroperoxides were assigned in a fatty acid and isomer specific way. Band-selective 1H NMR pulse excitation allowed immediate and precise (RSDR = 5.9%) quantification of both hydroperoxides and aldehydes with high throughput and large dynamic range at levels of 0.03 mmol/kg. Explorative multivariate data modeling of the quantitative 1H NMR profiles revealed that shelf life temperature has a significant impact on lipid oxidation mechanisms.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.