Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 544810
Title Impact of Long Term Diesel Contamination on Soil Microbial Community Structure
Author(s) Sutton, N.B.; Maphosa, F.; Morillo Perez, J.A.; Abu Al-Soud, W.; Langenhoff, A.A.M.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.; Smidt, H.
Department(s) WIMEK
Environmental Technology
Microbiology
VLAG
Publication type Dataset
Publication year 2012
Keyword(s) PRJEB3379 - ERP001958
Abstract Microbial community composition and diversity at a diesel contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the inter-relationships between microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with varying geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (p < 0.001). Bacterial phyla with high relative abundances in all samples included Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, and Chloroflexi. High relative abundances of Archaea, specifically the phylum Euryachaeota, were observed in contaminated samples. Redundancy analysis indicated increased relative abundance of the phyla Chloroflexi, Firmicutes, and Euryachaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site as well as the abundance of specific operational taxonomic units (OTUs, defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation has occurred. OTUs with sequence similarity to strictly anaerobic Anaerolinaea within the Chloroflexi, as well as Methanosaeta, of the phylum Euryachaeota, were detected. Anaerolinaea and Methanosaeta are known to be associated with anaerobic degradation of oil related compounds, therefore suggesting natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next generation sequencing techniques both to understand the ecological impact of contamination as well as to identify potential molecular proxies for detection of natural attenuation.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.