Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 544820
Title Aged mice display altered numbers and phenotype of basophils, and bone marrow-derived basophil activation, with a limited role for aging-associated microbiota
Author(s) Beek, Adriaan A. Van; Fransen, Floris; Meijer, Ben; Vos, Paul de; Knol, Edward F.; Savelkoul, Huub F.J.
Source Immunity and Ageing 15 (2018)1. - ISSN 1742-4933
DOI https://doi.org/10.1186/s12979-018-0135-6
Department(s) Cell Biology and Immunology
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Aging - Basophils - Bone marrow - Immunity - Microbiota - Spleen
Abstract

Background: The influence of age on basophils is poorly understood, as well as the effect of aging-associated microbiota on basophils. Therefore, we studied the influence of aging and aging-associated microbiota on basophil frequency and phenotype, and differentiation from basophil precursors. Results: Basophils became more abundant in bone marrow (BM) and spleens of 19-month-old mice compared with 4-month-old mice. Aged basophils tended to express less CD200R3 and more CD123, both in BM and spleen. Differences in microbiota composition with aging were confirmed by 16S sequencing. Microbiota transfers from young and old mice to germ-free recipients revealed that CD11b tended to be lowered on splenic basophils by aging-associated microbiota. Furthermore, abundance of Alistipes, Oscillibacter, Bacteroidetes RC9 gut group, and S24-7 family positively correlated and CD123 expression, whereas Akkermansia abundance negatively correlated with basophils numbers. Subsequently, we purified FcϵRIα+CD11c-CD117- BM-derived basophils and found that those from aged mice expressed lower levels of CD11b upon stimulation. Higher frequencies of IL-4+ basophils were generated from basophil precursors of aged mice, which could be reproduced in basophils derived from germ-free recipients of aging-associated microbiota. Conclusions: Collectively, these results show the influence of aging on basophils. Furthermore, this study shows that aging-associated microbiota altered activation of BM-derived basophils in a similar fashion as observed in BM-derived basophils from aged mice.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.