Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 545169
Title Characterization of CO2 laser browning of dough
Author(s) Blutinger, Jonathan David; Meijers, Yorán; Chen, Peter Yichen; Zheng, Changxi; Grinspun, Eitan; Lipson, Hod
Source Innovative Food Science and Emerging Technologies 52 (2019). - ISSN 1466-8564 - p. 145 - 157.
DOI https://doi.org/10.1016/j.ifset.2018.11.013
Department(s) Food Process Engineering
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Browning - CO laser - Dough - Flux - Food layered manufacture - Starch gelatinization
Abstract

We study the application of laser-heating technology to browning dough, due to its potential for high-resolution spatial and surface color control. An important component of this process is the identification of how laser parameters affect browning and baking and whether desirable results can be achieved. In this study, we analyze the performance of a carbon dioxide (CO2) mid-infrared laser (operating at 10.6 μm wavelength) during the browning of dough. Dough samples—consisting of flour and water—were exposed to the infrared laser at different laser power, beam diameter, and sample exposure time. At a laser energy flux of 0.32 MW m−2 (beam diameter of 5.7 mm) and sample exposure time of 180 s we observe a maximum thermal penetration of 0.77 mm and satisfactory dough browning. These results suggest that a CO2 laser is ideal for browning thin goods as well as for food layered manufacture. Industrial relevance: A CO2 laser that operates at a wavelength of 10.6 μm (IR) was used as an alternative method for browning dough. The high-power flux of the laser and the high energy absorption of food at this wavelength allow for rapid surface browning; however, the high absorption limits thermal penetration depth. Nevertheless, accuracy of the laser beam enables high resolution spatial and thermal control of the non-enzymatic browning process. This high precision cooking makes laser-browning particularly ideal for food layered manufacture (FLM), a food processing technique that has gained increased attention in recent years. Using FLM, one can adjust the printed layer height to match cooking penetration depth. As a digital manufacturing technology, laser-browning could also enable manufacture of highly complex and customized food geometries and textures.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.