Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 545374
Title A framework to parameterise nutrient management options and their impacts on maize yield, nutrient losses and long term soil fertility
Author(s) Berge, H.F.M. ten; Hijbeek, R.; Hermelink, Marleen; Loon, M.P. van; Ittersum, M.K. van
Source CGIAR (Working paper. Wageningen, the Netherlands: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) ) - 47 p.
Department(s) Agro Field Technology Innovations
Plant Production Systems
Farm Technology
Publication type Scientific report
Publication year 2018
Abstract Climate Smart Agriculture (CSA) encompasses all practices that mitigate climate change and at the same time enhance farmers’ livelihoods and adaptation to changing climate. Nutrient management is an important tool for farmers to increase yields. Efficient use of nutrients is necessary to limit greenhouse gas (GHG) emissions and costs of external inputs. To enable an overall assessment of the opportunities that nutrient management presents for CSA, nutrient cycles and dynamics need to be thoroughly understood. This report describes a framework to parametrise the impacts of nutrient inputs on the nutrient balance, crop yield and soil fertility, both in the short and the long term. Separating short term versus long term processes and internal crop processes versus crop-soil interactions results in four sets of equations that are mutually consistent. These can be viewed as alternative approaches to quantify nutrient requirements and associated impacts, depending on purpose of a study. Set 1 expresses nutrient uptake requirement as a function of target yield, both in short and long term. Set 2 expresses input requirements as function of target uptake, soil nutrient supply and fertiliser recovery in the short term. Set 3 is similar in structure and purpose to Set 2, but includes a long term feedback of nutrient input on fertiliser recovery via soil fertility. Set 4 is a reduction of Set 3, under a specific boundary condition imposing ‘efficient management’ in a simplified manner. The full sequence of relating a target yield to input requirement (or vice versa) is expressed by combinations of these sets: Sets 1 and 2 (short term), Sets 1 and 3 (long term equilibrium, generic), and Sets 1 and 4 (long term equilibrium, efficient management). The processes expressed by the sets of equations are governed by parameters that depend on management options (e.g. 4Rs: right source, rate, timing, placement), and have a direct bearing on overall nutrient use efficiency as expressed in agronomic N use efficiency (ANE, kg extra grain yield per kg N input), and associated impacts. The framework presented in this report is applied in other components of the Crop Nutrient Gap Project (Bringing CSA practices to scale), notably in (i) presenting spatial maps of nutrient requirements for different levels of yield gap closure in sub-Saharan Africa (, (ii) assessing GHG emissions for contrasting intensification scenarios; and (iii) assessing trade-offs between food security, farm income and climate change mitigation.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.