Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 545688
Title Runtime Adaptability of Ambient Intelligence Systems Based on Component-Oriented Approach
Author(s) Kaya, M.C.; Eroğlu, Alperen; Karamanlioglu, Alper; Onur, Ertan; Tekinerdogan, B.; Dogru, A.H.
Source In: Guide to ambient intelligence in the IoT environment / Mahmood, Zaigham, Springer Verlag (Computer Communications and Networks ) - ISBN 9783030041724 - p. 69 - 92.
DOI https://doi.org/10.1007/978-3-030-04173-1_4
Department(s) Information Technology
WASS
Publication type Peer reviewed book chapter
Publication year 2019
Abstract Technological improvements of the Internet and connected devices cause increased user expectations. People want to be offered different services in nearly every aspect of their lives. It is a key point that these services can be reached seamlessly and should be dynamically available conforming to the active daily life of today’s people. This can be achieved by having intelligent environments along with smart appliances and applications. The concept of ambient intelligence arises from this need to react with users at runtime and keep providing real-time services under changing conditions. This chapter introduces a component-oriented ontology-based approach to develop runtime adaptable ambient intelligence systems. In this approach, the adaptability mechanism is enabled through a component-oriented method with variability-related capabilities. The outcome supports the find-and-integrate method from the idea formation to the executable system, and thus reducing the need for heavy processes for development. Intelligence is provided through ontology modeling that supports repeatability of the approach in different domains, especially when used in interaction with component variability. In this context, an example problem exploiting the variability in the density of a smart stadium network is used to illustrate the application of the component-driven approach.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.