Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 545822
Title Understanding and optimizing species mixtures using functional–structural plant modelling
Author(s) Evers, Jochem B.; Werf, Wopke Van Der; Stomph, Tjeerd J.; Bastiaans, Lammert; Anten, Niels P.R.
Source Journal of Experimental Botany 70 (2019)9. - ISSN 0022-0957 - p. 2381 - 2388.
Department(s) PE&RC
Crop and Weed Ecology
Crop Physiology
Publication type Refereed Article in a scientific journal
Publication year 2019
Abstract Plant species mixtures improve productivity over monocultures by exploiting species complementarities for resource capture in time and space. Complementarity results in part from competition avoidance responses that maximize resource capture and growth of individual plants. Individual organs accommodate to local resource levels, e.g. with regard to nitrogen content and photosynthetic capacity or by size (e.g. shade avoidance). As a result, the resource acquisition in time and space is improved and performance of the community as a whole is increased. Modelling is needed to unravel the primary drivers and subsequent dynamics of complementary growth responses in mixtures. Here, we advocate using functional–structural plant (FSP) modelling to analyse the functioning of plant mixtures. In FSP modelling, crop performance is a result of the behaviour of the individual plants interacting through competitive and complementary resource acquisition. FSP models can integrate the interactions between structural and physiological plant responses to the local resource availability and strength of competition, which drive resource capture and growth of individuals in species mixtures. FSP models have the potential to accelerate mixed-species plant research, and thus support the development of knowledge that is needed to promote the use of mixtures towards sustainably increasing crop yields at acceptable input levels.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.