Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 545868
Title Verification of Seasonal Climate Forecast Towards Hydro-Climatic Information Needs of Rice Farmers in Northern Ghana
Author(s) Nyadzi, Emmanuel; Werners, S.E.; Biesbroek, Robbert; Phi Long, Hoang; Franssen, W.H.P.; Ludwig, F.
Source Weather, climate and society 11 (2019)1. - ISSN 1948-8327 - p. 127 - 142.
DOI https://doi.org/10.1175/WCAS-D-17-0137.1
Department(s) Knowledge Technology and Innovation
Water Systems and Global Change
WIMEK
WASS
Public Administration and Policy
Publication type Refereed Article in a scientific journal
Publication year 2019
Abstract Farmers in sub-Saharan Africa face many difficulties when making farming decisions due to unexpected changes in weather and climate. Access to hydroclimatic information can potentially assist farmers to adapt. This study explores the extent to which seasonal climate forecasts can meet hydroclimatic information needs of rice farmers in northern Ghana. First, 62 rice farmers across 12 communities were interviewed about their information needs. Results showed that importance of hydroclimatic information depends on the frequency of use and farming type (rain-fed, irrigated, or both). Generally, farmers perceived rainfall distribution, dam water level, and temperature as very important information, followed by total rainfall amount and onset ranked as important. These findings informed our skills assessment of rainfall (Prcp), minimum temperature (Tmin), and maximum temperature (Tmax) from the European Centre for Medium-Range Weather Forecasts (ECMWF-S4) and at lead times of 0 to 2 months. Forecast bias, correlation, and skills for all variables vary with season and location but are generally unsystematic and relatively constant with forecast lead time. Making it possible to meet farmers’ needs at their most preferred lead time of 1 month before the farming season. ECMWF-S4 exhibited skill in Prcp, Tmin, and Tmax in northern Ghana except for a few grid cells in MAM for Prcp and SON for Tmin and Tmax. Tmin and Tmax forecasts were more skillful than Prcp. We conclude that the participatory coproduction approach used in this study provides better insight for understanding demand-driven climate information services and that the ECMWF-S4 seasonal forecast system has the potential to provide actionable hydroclimatic information that may support farmers’ decisions.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.