Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 546753
Title The metabonomic signature of celiac disease
Author(s) Bertini, Ivano; Calabró, Antonio; Carli, Valeria De; Luchinat, Claudio; Nepi, Stefano; Porfirio, Berardino; Renzi, Daniela; Saccenti, Edoardo; Tenori, Leonardo
Source Journal of Proteome Research 8 (2009)1. - ISSN 1535-3893 - p. 170 - 177.
DOI https://doi.org/10.1021/pr800548z
Department(s) VLAG
Systems and Synthetic Biology
Publication type Refereed Article in a scientific journal
Publication year 2009
Keyword(s) Celiac disease - Energy metabolism - Gut microflora - NMR spectroscopy - Support vector machines
Abstract

Celiac disease (CD) is a multifactorial disorder involving genetic and environmental factors, thus, having great potential impact on metabolism. This study aims at defining the metabolic signature of CD through Nuclear Magnetic Resonance (NMR) of urine and serum samples of CD patients. Thirty-four CD patients at diagnosis and 34 healthy controls were examined by 1H NMR of their serum and urine. A CD patients' subgroup was also examined after a gluten-free diet (GFD). Projection to Latent Structures provided data reduction and clustering, and Support Vector Machines provided pattern recognition and classification. The classification accuracy of CD and healthy control groups was 79.7-83.4% for serum and 69.3% for urine. Sera of CD patients were characterized by lower levels (P < 0.01) of several metabolites such as amino acids, lipids, pyruvate and choline, and by higher levels of glucose and 3-hydroxybutyric acid, while urines showed altered levels (P < 0.05) of, among others, indoxyl sulfate, meta-[hydroxyphenyl]propionic acid and phenylacetylglycine. After 12 months of GFD, all but one of the patients were classified as healthy by the same statistical analysis. NMR thus reveals a characteristic metabolic signature of celiac disease. Altered serum levels of glucose and ketonic bodies suggest alterations of energy metabolism, while the urine data point to alterations of gut microbiota. Metabolomics may thus provide further hints on the biochemistry of the disease.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.