Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 546754
Title The Potential for Upscaling Kelp (Saccharina latissima) Cultivation in Salmon-Driven Integrated Multi-Trophic Aquaculture (IMTA)
Author(s) Fossberg, Julia; Forbord, Silje; Broch, Ole Jacob; Malzahn, Arne M.; Jansen, Henrice; Handå, Aleksander; Førde, Henny; Bergvik, Maria; Fleddum, Anne Lise; Skjermo, Jorunn; Olsen, Yngvar
Source Frontiers in Marine Science 5 (2018). - ISSN 2296-7745
DOI https://doi.org/10.3389/fmars.2018.00418
Department(s) Regional center Yerseke
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) nitrogen - bioremediation - stable isotope - numerical modeling - Norway
Abstract Integrated multi-trophic aquaculture (IMTA) has the potential of reducing open-cage fish farming impacts on the environment while also introducing new value chains. The aim of this study was to investigate the growth and composition of the kelp Saccharina latissima in salmon-driven IMTA, and to assess the spatial extent of the influence of salmon derived nitrogen in order to evaluate the upscaling potential for IMTA. S. latissima was cultivated 100, 200, and 1,000 m east and 1,000 m west of a 5,000 tons salmon farm in Western Norway from February to September 2013. The proportion of salmon derived nitrogen available for the kelp showed a clear decline with distance from the farm. Accordingly, the kelp cultivated near the salmon cages grew faster during the spring season, and growth rate decreased with increasing distance from the farm. A spatially explicit numerical model system (SINMOD), including compartments for dissolved nutrients and kelp growth, was tuned to the field data and used to investigate the potential for upscaling IMTA production. The model was used to introduce a new metric—the impacted area IA—for the areal effects of IMTA in terms of the increase in production by IMTA. The model showed that a 25 hectare kelp farm in the vicinity of the studied salmon farm could take up 1.6 of the 13.5 tons of dissolved inorganic nitrogen released during kelp cultivation, amounting to almost 12% of the ammonia released during the cultivation period from February to June. The 25 hectare kelp farm would have a production yield of 1,125 tons fresh weight (FW), being 60% more than that of a non-IMTA kelp farm, while a 20% increase of kelp FW could be obtained over a 110 hectar area in salmon-driven IMTA. To achieve an even mass balance, an area of approximately 220 ha−1 would be needed to cultivate enough kelp to fix an equivalent of the nitrogen released by the fish
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.