Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 547063
Title A Comprehensive Study of the Potential Application of Flying Ethylene-Sensitive Sensors for Ripeness Detection in Apple Orchards
Author(s) Valente, João; Almeida, Rodrigo; Kooistra, Lammert
Source Sensors 19 (2019)2. - ISSN 1424-8220
Department(s) Laboratory of Geo-information Science and Remote Sensing
Information Technology
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) apple orchards - ethylene gas detection - fruit ripeness - modeling and simulation - unmanned aerial vehicles

The right moment to harvest apples in fruit orchards is still decided after persistent monitoring of the fruit orchards via local inspection and using manual instrumentation. However, this task is tedious, time consuming, and requires costly human effort because of the manual work that is necessary to sample large orchard parcels. The sensor miniaturization and the advances in gas detection technology have increased the usage of gas sensors and detectors in many industrial applications. This work explores the combination of small-sized sensors under Unmanned Aerial Vehicles (UAV) to understand its suitability for ethylene sensing in an apple orchard. To accomplish this goal, a simulated environment built from field data was used to understand the spatial distribution of ethylene when subject to the orchard environment and the wind of the UAV rotors. The simulation results indicate the main driving variables of the ethylene emission. Additionally, preliminary field tests are also reported. It was demonstrated that the minimum sensing wind speed cut-off is 2 ms-1 and that a small commercial UAV (like Phantom 3 Professional) can sense volatile ethylene at less than six meters from the ground with a detection probability of a maximum of 10 % . This work is a step forward in the usage of aerial remote sensing technology to detect the optimal harvest time.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.