Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 547265
Title Dissolved organic carbon in permafrost regions : A review
Author(s) Ma, Qiang; Jin, Huijun; Yu, Congrong; Bense, Victor F.
Source Science China Earth Sciences 62 (2019)2. - ISSN 1674-7313 - p. 349 - 364.
Department(s) WIMEK
Hydrology and Quantitative Water Management
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Aquatic ecosystem - Carbon biodegradability - Dissolved organic carbon (DOC) - DOC export - Permafrost degradation

A large quantity of organic carbon (C) is stored in northern and elevational permafrost regions. A portion of this large terrestrial organic C pool will be transferred by water into soil solution (~0.4 Pg C yr−1) (1 Pg=1015 g), rivers (~0.06 Pg C yr−1), wetlands, lakes, and oceans. The lateral transport of dissolved organic carbon (DOC) is the primary pathway, impacting river biogeochemistry and ecosystems. However, climate warming will substantially alter the lateral C shifts in permafrost regions. Vegetation, permafrost, precipitation, soil humidity and temperature, and microbial activities, among many other environmental factors, will shift substantially under a warming climate. It remains uncertain as to what extent the lateral C cycle is responding, and will respond, to climate change. This paper reviews recent studies on terrestrial origins of DOC, biodegradability, transfer pathways, and modelling, and on how to forecast of DOC fluxes in permafrost regions under a warming climate, as well as the potential anthropogenic impacts on DOC in permafrost regions. It is concluded that: (1) surface organic layer, permafrost soils, and vegetation leachates are the main DOC sources, with about 4.72 Pg C DOC stored in the topsoil at depths of 0–1 m in permafrost regions; (2) in-stream DOC concentrations vary spatially and temporally to a relatively small extent (1–60 mg C L−1) and annual export varies from 0.1–10 g C m–2 yr–1; (3) biodegradability of DOC from the thawing permafrost can be as high as 71%, with a median at 52%; (4) DOC flux is controlled by multiple factors, mainly including vegetation, soil properties, permafrost occurrence, river discharge and other related environmental factors, and (5) many statistical and process-based models have been developed, but model predictions are inconsistent with observational results largely dependent on the individual watershed characteristics and future discharge trends. Thus, it is still difficult to predict how future lateral C flux will respond to climate change, but changes in the DOC regimes in individual catchments can be predicted with a reasonable reliability. It is advised that sampling protocols and preservation and analysis methods should be standardized, and analytical techniques at molecular scales and numerical modeling on thermokarsting processes should be prioritized.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.