Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 547286
Title Imputation to whole-genome sequence using multiple pig populations and its use in genome-wide association studies
Author(s) Berg, Sanne van den; Vandenplas, Jérémie; Eeuwijk, Fred A. van; Bouwman, Aniek C.; Lopes, Marcos S.; Veerkamp, Roel F.
Source Genetics, Selection, Evolution 51 (2019). - ISSN 0999-193X
Department(s) Aquatic Ecology and Water Quality Management
Animal Breeding & Genomics
Mathematical and Statistical Methods - Biometris
Publication type Refereed Article in a scientific journal
Publication year 2019

BACKGROUND: Use of whole-genome sequence data (WGS) is expected to improve identification of quantitative trait loci (QTL). However, this requires imputation to WGS, often with a limited number of sequenced animals for the target population. The objective of this study was to investigate imputation to WGS in two pig lines using a multi-line reference population and, subsequently, to investigate the effect of using these imputed WGS (iWGS) for GWAS. METHODS: Phenotypes and genotypes were available on 12,184 Large White pigs (LW-line) and 4943 Dutch Landrace pigs (DL-line). Imputed 660 K and 80 K genotypes for the LW-line and DL-line, respectively, were imputed to iWGS using Beagle v.4.1. Since only 32 LW-line and 12 DL-line boars were sequenced, 142 animals from eight commercial lines were added. GWAS were performed for each line using the 80 K and 660 K SNPs, the genotype scores of iWGS SNPs that had an imputation accuracy (Beagle R2) higher than 0.6, and the dosage scores of all iWGS SNPs. RESULTS: For the DL-line (LW-line), imputation of 80 K genotypes to iWGS resulted in an average Beagle R2 of 0.39 (0.49). After quality control, 2.5 × 106 (3.5 × 106) SNPs had a Beagle R2 higher than 0.6, resulting in an average Beagle R2 of 0.83 (0.93). Compared to the 80 K and 660 K genotypes, using iWGS led to the identification of 48.9 and 64.4% more QTL regions, for the DL-line and LW-line, respectively, and the most significant SNPs in the QTL regions explained a higher proportion of phenotypic variance. Using dosage instead of genotype scores improved the identification of QTL, because the model accounted for uncertainty of imputation, and all SNPs were used in the analysis. CONCLUSIONS: Imputation to WGS using the multi-line reference population resulted in relatively poor imputation, especially when imputing from 80 K (DL-line). In spite of the poor imputation accuracies, using iWGS instead of a lower density SNP chip increased the number of detected QTL and the estimated proportion of phenotypic variance explained by these QTL, especially when dosage scores were used instead of genotype scores. Thus, iWGS, even with poor imputation accuracy, can be used to identify possible interesting regions for fine mapping.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.