Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 547995
Title Gas-liquid phase equilibrium of a model Langmuir monolayer captured by a multiscale approach
Author(s) Moghimikheirabadi, Ahmad; Sagis, Leonard M.C.; Kröger, Martin; Ilg, Patrick
Source Physical Chemistry Chemical Physics 21 (2019)5. - ISSN 1463-9076 - p. 2295 - 2306.
DOI https://doi.org/10.1039/c8cp05447a
Department(s) VLAG
Physics and Physical Chemistry of Foods
Publication type Refereed Article in a scientific journal
Publication year 2019
Abstract

The gas-liquid expanded phase transition of a Langmuir monolayer happens at very low surface concentrations which makes this phenomenon extremely expensive to explore in finite three-dimensional (3D) atomistic simulations. Starting with a 3D model reference system of amphiphilic surfactants at a 2D vapor-liquid interface, we apply our recently developed approach (Phys. Chem. Chem. Phys., 2018, 20, 16238) and map the entire system to an effective 2D system of surfactant center-of-masses projected onto the interface plane. The coarse-grained interaction potential obtained via a force-matching scheme from the 3D simulations is then used to predict the 2D gas-liquid phase equilibrium of the corresponding Langmuir monolayer. Monte Carlo simulations in the Gibbs ensemble are performed to calculate areal densities, chemical potentials and surface pressures of the gaseous and liquid coexisting phases within the monolayer. We compare these simulations to the results of a 2D density functional approach based on Weeks-Chandler-Anderson perturbation theory. We furthermore use this approach to determine the density profiles across the equilibrium gas-liquid dividing line and the corresponding line tensions.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.