Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 548179
Title An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea)
Author(s) Evangelista, Dominic A.; Wipfler, Benjamin; Béthoux, Olivier; Donath, Alexander; Fujita, Mari; Kohli, Manpreet K.; Legendre, Frédéric; Liu, Shanlin; Machida, Ryuichiro; Misof, Bernhard; Peters, Ralph S.; Podsiadlowski, Lars; Rust, Jes; Schuette, Kai; Tollenaar, Ward; Ware, Jessica L.; Wappler, Torsten; Zhou, Xin; Meusemann, Karen; Simon, Sabrina
Source Proceedings of the Royal Society. B: Biological Sciences 286 (2019)1895. - ISSN 0962-8452
DOI https://doi.org/10.1098/rspb.2018.2076
Department(s) Biosystematics
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Isoptera - Maternal care - Palaeontology - Sociality - Systematics - Transcriptomes
Abstract

Phylogenetic relationships among subgroups of cockroaches and termites are still matters of debate. Their divergence times and major phenotypic transitions during evolution are also not yet settled. We addressed these points by combining the first nuclear phylogenomic study of termites and cockroaches with a thorough approach to divergence time analysis, identification of endosymbionts, and reconstruction of ancestral morphological traits and behaviour. Analyses of the phylogenetic relationships within Blattodea robustly confirm previously uncertain hypotheses such as the sister-group relationship between Blaberoidea and remaining Blattodea, and Lamproblatta being the closest relative to the social and wood-feeding Cryptocercus and termites. Consequently, we propose new names for various clades in Blattodea: Cryptocercus þ termites ¼ Tutricablattae; Lamproblattidae þ Tutricablattae ¼ Kittrickea; and Blattoidea þ Corydioidea ¼ Solumblattodea. Our inferred divergence times contradict previous studies by showing that most subgroups of Blattodea evolved in the Cretaceous, reducing the gap between molecular estimates of divergence times and the fossil record. On a phenotypic level, the blatto-dean ground-plan is for egg packages to be laid directly in a hole while other forms of oviposition, including ovovivipary and vivipary, arose later. Finally, other changes in egg care strategy may have allowed for the adaptation of nest building and other novelties.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.