Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 548197
Title Low carbon heating and cooling by combining various technologies with Aquifer Thermal Energy Storage
Author(s) Pellegrini, M.; Bloemendal, M.; Hoekstra, N.; Spaak, G.; Andreu Gallego, A.; Rodriguez Comins, J.; Grotenhuis, T.; Picone, S.; Murrell, A.J.; Steeman, H.J.
Source Science of the Total Environment 665 (2019). - ISSN 0048-9697 - p. 1 - 10.
DOI https://doi.org/10.1016/j.scitotenv.2019.01.135
Department(s) WIMEK
Environmental Technology
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Aquifer Thermal Energy Storage - Geothermal energy - Heating and cooling - Photovoltaic-thermal module - Pilot plant - Remediation - Technological innovation - Water scarcity
Abstract

A transition to a low carbon energy system is needed to respond to global challenge of climate change mitigation. Aquifer Thermal Energy Storage (ATES) is a technology with worldwide potential to provide sustainable space heating and cooling by (seasonal) storage and recovery of heat in the subsurface. However, adoption of ATES varies strongly across Europe, because of both technical as well as organizational barriers, e.g. differences in climatic and subsurface conditions and legislation respectively. After identification of all these barriers in a Climate-KIC research project, six ATES pilot systems have been installed in five different EU-countries aiming to show how such barriers can be overcome. This paper presents the results of the barrier analysis and of the pilot plants. The barriers are categorized in general barriers, and barriers for mature and immature markets. Two pilots show how ATES can be successfully used to re-develop contaminated sites by combining ATES with soil remediation. Two other pilots show the added value of ATES because its storage capacity enables the utilization of solar heat in combination with solar power production. Finally, two pilots are realized in countries with legal barriers where ATES systems have not previously been applied at all.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.