Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 548199
Title Hydrophobic eutectic mixtures as volatile fatty acid extractants
Author(s) Bruinhorst, Adriaan van den; Raes, Sanne; Maesara, Sausan Atika; Kroon, Maaike C.; Esteves, A.C.C.; Meuldijk, Jan
Source Separation and Purification Technology 216 (2019). - ISSN 1383-5866 - p. 147 - 157.
DOI https://doi.org/10.1016/j.seppur.2018.12.087
Department(s) Environmental Technology
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Deep eutectic solvents - Designer solvents - Eutectic mixtures - Liquid–liquid extraction - Volatile fatty acid recovery
Abstract

Organic waste streams can be converted into volatile fatty acids (VFAs) via fermentation. VFAs can be used as intermediates in the synthesis of added-value chemicals. In this work, hydrophobic eutectic mixtures were designed for the liquid-liquid extraction of VFAs from dilute aqueous solutions. The eutectic behaviour was screened for over 100 combinations of 16 hydrophobic components that were selected based on a set of predetermined criteria. Mixtures of dihexylthiourea and trioctylphosphine oxide (TOPO) showed the best extraction performance and were stable over a wide pH range. The extraction efficiency increased with increasing hydrophobicity of the VFAs, and only undissociated acids were extracted. Upon increasing the TOPO content of the eutectic mixture, the extraction performance could be improved, confirming the tuneable nature of eutectic solvents. However, the extraction performance was less than that for solutions of TOPO in hydrophobic solvents, even though mole fractions of TOPO were higher in the eutectic mixtures. It was hypothesized that the intermolecular VFA–TOPO interactions required for extraction are suppressed by the inter-component interactions in the eutectic mixture. The inter-component interactions are responsible for the negative deviation from ideality of the melting temperature depressions that extend the liquid window of the mixtures towards the extraction temperature. Hence, the design of novel hydrophobic extractants based on eutectic mixtures was demonstrated. Their performance might be improved by selecting counterparts that interfere less with the interactions required for VFA extraction.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.