Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 548229
Title Understanding the Role of Soils and Management on Crops in the Face of Climate Uncertainty in Zimbabwe: A Sensitivity Analysis
Author(s) Masikati, Patricia; Descheemaeker, Katrien; Crespo, Olivier
Source In: The Climate-Smart Agriculture Papers / Rosenstock, Todd S., Nowak, Andreea, Girvetz, Evan, Springer International Publishing - ISBN 9783319927978 - p. 49 - 64.
DOI https://doi.org/10.1007/978-3-319-92798-5_5
Department(s) Plant Production Systems
PE&RC
Publication type Peer reviewed book chapter
Publication year 2018
Abstract Although climate change is likely to affect a wide variety of sectors in Zimbabwe, the risk to agriculture stands out most since agriculture is the mainstay of the country’s economy. In addition, there is little information available on how to help smallholder farming systems and livelihoods respond to these risks. To determine the effects on crop production of expected changes in precipitation patterns and projected increases in carbon dioxide (CO2) and temperature, we used two process-based crop models—the Decision Support System for Agrotechnology Transfer (DSSAT) model and the Agricultural Production Systems Simulator (APSIM) model. The models were calibrated and validated to assess the effects of single and combined climatic factors on grain and stover yield performance of maize and groundnut, across three soil types. The two models generally agree on the effects that different climatic factors have on both maize and groundnuts, however, the magnitude of the effects varied. For example, reductions on maize grain yields are more pronounced in the APSIM model while the DSSAT model shows more pronounced reduction of maize stover yields. Both models show yield benefits under elevated CO2 concentration for groundnuts negating the effects of increased temperatures when evaluating the combined effects of the climatic factors. However, yield increases for both groundnut grain and stover are more pronounced in the DSSAT model. The key finding is that soils play an important role in determining outputs of crop-climate interactions: they can buffer or aggravate climatic impacts.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.