Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 548462
Title Benchmarking of Regression Algorithms and Time Series Analysis Techniques for Sales Forecasting
Author(s) Catal, Cagatay; Ece, Kaan; Arslan, Begum; Akbulut, Akhan
Source Balkan Journal of Electrical & Computer Engineering 7 (2019)1. - ISSN 2147-284X - p. 20 - 26.
DOI https://doi.org/10.17694/bajece.494920
Department(s) Information Technology
Publication type Refereed Article in a scientific journal
Publication year 2019
Abstract Predicting the sales amount as close as to the actual sales amount can provide many benefits to companies. Since the fashion industry is not easily predictable, it is not straightforward to make an accurate prediction of sales. In this study, we applied not only regression methods in machine learning, but also time series analysis techniques to forecast the sales amount based on several features. We applied our models on Walmart sales data in Microsoft Azure Machine Learning Studio platform. The following regression techniques were applied: Linear Regression, Bayesian Regression, Neural Network Regression, Decision Forest Regression and Boosted Decision Tree Regression. In addition to these regression techniques, the following time series analysis methods were implemented: Seasonal ARIMA, Non-Seasonal ARIMA, Seasonal ETS, Non -Seasonal ETS, Naive Method, Average Method and Drift Method. It was shown that Boosted Decision Tree Regression provides the best performance on this sales data. This project is a part of the development of a new decision support system for the retail industry.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.