Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 548862
Title Optical bleaching front in bedrock revealed by spatially-resolved infrared photoluminescence
Author(s) Sellwood, E.L.; Guralnik, B.; Kook, M.; Prasad, A.K.; Sohbati, R.; Hippe, K.; Wallinga, J.; Jain, M.
Source Scientific Reports 9 (2019)1. - ISSN 2045-2322
Department(s) PE&RC
Soil Geography and Landscape
Publication type Refereed Article in a scientific journal
Publication year 2019

Optically stimulated luminescence (OSL) dating of sediment, based on the accumulation of trapped charge in natural crystals since their last exposure to daylight, has revolutionised our understanding of the late Quaternary period. Recently, a complementary technique called luminescence rock surface dating (RSD), which uses differential spatial eviction of trapped charges in rocks exposed to daylight, has been developed to derive exposure and burial ages, and hard-rock erosion rates. In its current form, the RSD technique suffers from labour intensive sample preparation, uncertainties in the depth and dose rate estimates, and poor resolution of the luminescence-depth profile. Here, we develop a novel, 2D luminescence imaging technique for RSD of large rock slabs (3 × 5 cm) to overcome these challenges. We utilize the recently discovered infrared photoluminescence (IRPL) signal for direct, non-destructive imaging of the luminescence-depth profile in a sub-aerially exposed granitic rock, with an unprecedented spatial resolution of ~140 µm. We further establish a correlation between luminescence and geochemistry using micro X-ray fluorescence (µXRF) spectroscopy. Our study promises a substantial advancement in luminescence imaging and paves the path towards novel applications using 2D dating, micro-dosimetry in mixed composition samples, and portable instrumentation for in-situ luminescence measurements.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.